摘要:管理類聯(lián)考考研的七個專業(yè)的考試科目都包含204考研英語(二),為方便考生們提高英語寫作水平,希賽網(wǎng)為考生整理了考研英語二經(jīng)典外刊選讀文章,方便各位考生備考。
本文為管理類聯(lián)考考研英語二外刊選讀第十五篇,可點擊上方藍色圖標“本文資料”,免費獲取更多管理類聯(lián)考考研英語二外刊選讀內(nèi)容,方便各位考生備考、了解考試內(nèi)容。
ChatGPT raises a debate over how human learn language
題材:科普類
出處:The Economist《經(jīng)濟學人》
字數(shù):739 words
[1] When deep blue, a chess computer, defeated Garry Kasparov, a world champion, in 1997 many gasped in fear of machines triumphing over mankind. In the intervening years, artificial intelligence has done some astonishing things, but none has managed to capture the public imagination in quite the same way. Now, though, the astonishment of the Deep Blue moment is back, because computers are employing something that humans consider their defining ability: language.
【1997年,當國際象棋計算機深藍擊敗世界冠軍加里·卡斯帕羅夫時,許多人因害怕機器戰(zhàn)勝人類而倒吸一口冷氣。在這幾年里,人工智能做了一些令人驚訝的事情,但沒有一件能以完全相同的方式引發(fā)公眾的想象力。然而,現(xiàn)在,深藍時刻又回來了,因為計算機正在使用人類認為自己具有定義能力的東西:語言。】
【重點詞匯】
gasp /ɡɑ?sp/ v. (尤指驚訝或疼痛時的)倒吸氣
triumph /?tra??mf/ v. 打敗 n. 巨大成功
intervening /??nt??vi?n??/ adj. 發(fā)生于其間的
astonishing /??st?n????/ adj. 令人十分驚訝的
[2] Or are they? Certainly, large language models (LLMs), of which the most famous is ChatGPT, produce what looks like impeccable human writing. But a debate has ensued about what the machines are actually doing internally, what it is that humans, in turn, do when they speak—and, inside the academy, about the theories of the world’s most famous linguist, Noam Chomsky.
【真的是嗎?當然,大型語言模型 (LLMs),其中最著名的是ChatGPT,可以產(chǎn)生看起來無可挑剔的人類寫作。但是隨之而來的爭論是,機器內(nèi)部到底是怎么運作的,反過來,人類在說話時人體內(nèi)部又在做什么,而在學術(shù)界,爭論的焦點是世界上最著名的語言學家諾姆·喬姆斯基的理論。】
【重點詞匯】
impeccable /?m?pek?b(?)l/ adj. 無可挑剔的
internally /?n?t??n?li/ adv. 在內(nèi)部
【長難句分析】
Certainly, large language models (LLMs), of which the most famous is ChatGPT, produce what looks like impeccable human writing.
【結(jié)構(gòu)分析】
主句:large language models (LLMs) produce
定語從句:of which the most famous is ChatGPT
賓語從句:what looks like impeccable human writing
[3] Although Professor Chomsky’s ideas have changed considerably since he rose to prominence in the 1950s, several elements have remained fairly constant. He and his followers argue that human language is different in kind (not just degree of expressiveness) from all other kinds of communication. All human languages are more similar to each other than they are to, say, whale song or computer code. Professor Chomsky has frequently said a Martian visitor would conclude that all humans speak the same language, with surface variation.
【盡管喬姆斯基教授自20世紀50年代成名以來,他的思想發(fā)生了很大的變化,但有幾個方面卻在很大程度上保持不變。他和他的追隨者認為,人類語言與所有其他形式的交流在種類上(不僅僅是表達程度)是不同的。所有的人類語言彼此之間的相似性比鯨魚的歌聲或計算機代碼更大。喬姆斯基教授經(jīng)常說,火星訪客會得出結(jié)論,即所有人都說同一種語言,只是表面上有所不同。】
【重點詞匯】
considerably /k?n?s?d?r?bli/ adv. 相當多地
prominence /?pr?m?n?ns/ n. 出名
fairly /?fe?li/ adj. 在很大程度上
degree /d??ɡri?/ n. 程度
frequently /?fri?kw?ntli/ adv. 頻繁地
variation /?ve?ri?e??(?)n/ n. 變化
[4] Perhaps most notably, Chomskyan theories hold that children learn their native languages with astonishing speed and ease despite “the poverty of the stimulus”: the sloppy and occasional language they hear in childhood. The only explanation for this can be that some kind of predisposition for language is built into the human brain.
【也許最值得注意的是,喬姆斯基的理論認為,盡管“缺乏刺激”: 他們在童年時聽到的是草率和偶然的語言,但兒童學習母語的速度和輕松程度是驚人的。對此的唯一解釋是,人類大腦中存在某種語言傾向?!?/p>
【重點詞匯】
stimulus /?st?mj?l?s/ n. 刺激
sloppy /?sl?pi/ adj. 草率的
occasional /??ke???n(?)l/ adj. 偶然的
predisposition /?pri?d?sp??z??(?)n/ n. 傾向
[5] Chomskyan ideas have dominated the linguistic field of syntax since their birth. But many linguists are strident anti-Chomskyans. And some are now seizing on the capacities of LLMs to attack Chomskyan theories anew.
【喬姆斯基的思想自誕生之日起就占據(jù)了語言學領(lǐng)域的主導地位。但許多語言學家都是強硬的反喬姆斯基主義者。一些人現(xiàn)在正利用LLMs的能力,重新攻擊喬姆斯基的理論?!?/p>
【重點詞匯】
dominate /?d?m?ne?t/ v. 占據(jù)主導地位
strident /?stra?d(?)nt/ adj. 強硬的
seize on 利用
[6] Grammar has a hierarchical, nested structure involving units within other units. Words form phrases, which form clauses, which form sentences and so on. Chomskyan theory posits a mental operation, “Merge”, which glues smaller units together to form larger ones that can then be operated on further (and so on). In a recent New York Times op-ed, the man himself (now 94) and two co-authors said “we know” that computers do not think or use language as humans do, referring implicitly to this kind of cognition. LLMs, in effect, merely predict the next word in a string of words.
【語法具有層次結(jié)構(gòu),嵌套結(jié)構(gòu),涉及單元之間的單元。單詞組成短語,短語組成分句,分句組成句子,以此類推。喬姆斯基的理論假定了一種心理操作,即“合并”,它將較小的單元粘合在一起,形成更大的單元,然后可以進一步操作(以此類推)。在《紐約時報》最近的一篇專欄文章中,他本人(現(xiàn)年94歲)和兩位合著者表示,“我們知道”計算機不像人類那樣思考或使用語言,暗指這種認知。LLMs實際上只是預(yù)測單詞串中的下一個單詞。】
【重點詞匯】
hierarchical /?ha???rɑ?k?k(?)l/ adj. 按等級劃分的
posit /?p?z?t/ v. 假設(shè)
implicitly /?m?pl?s?tli/ 含蓄地
【7】Yet it is hard, for several reasons, to fathom what LLMs “think”. Details of the programming and training data of commercial ones like ChatGPT are proprietary. And not even the programmers know exactly what is going on inside.
【然而,由于一些原因,很難理解LLMs在“思考”什么。像ChatGPT這樣的商業(yè)軟件的編程細節(jié)和訓練數(shù)據(jù)是專利的。甚至連程序員都不知道里面到底發(fā)生了什么。】
【重點詞匯】
fathom /?f?e?m/ v. 理解
proprietary /pr??pra??t(?)ri/ adj. 專利的
【8】Linguists have, however, found clever ways to test LLMs’ underlying knowledge, in effect tricking them with probing tests. And indeed, LLMs seem to learn nested, hierarchical grammatical structures, even though they are exposed to only linear input, ie, strings of text. They can handle novel words and grasp parts of speech. Tell ChatGPT that “dax” is a verb meaning to eat a slice of pizza by folding it, and the system deploys it easily: “After a long day at work, I like to relax and dax on a slice of pizza while watching my favourite TV show.” (The imitative element can be seen in “dax on”, which ChatGPT probably patterned on the likes of “chew on” or “munch on”.)
【然而,語言學家已經(jīng)找到了一些聰明的方法來測試LLMs的基礎(chǔ)知識,實際上是用探查性的測試來欺騙他們。事實上,LLMs似乎可以學習嵌套的、分層的語法結(jié)構(gòu),即使他們只接觸線性輸入,即文本字符串。他們能處理新單詞,掌握部分詞性。告訴ChatGPT,“dax”是一個動詞,意思是把一片披薩折疊起來吃,系統(tǒng)很容易就能把它應(yīng)用起來:“在漫長的一天工作之后,我喜歡放松一下,一邊看我最喜歡的電視節(jié)目,一邊咀嚼披薩?!?模仿元素可以在“dax on”中看到,ChatGPT可能模仿了“chew on”或“munch on”之類的單詞。)】
【重點詞匯】
underlying /??nd??la???/ adj. 基礎(chǔ)的
probing /?pr??b??/ adj. 探查性的
deploy /d??pl??/ v. 有效地利用
imitative /??m?t?t?v/ adj. 模仿的
【9】What about the “poverty of the stimulus”? After all, GPT-3 (the LLM underlying ChatGPT until the recent release of GPT-4) is estimated to be trained on about 1,000 times the data a human ten-year-old is exposed to. That leaves open the possibility that children have an inborn tendency to grammar, making them far more proficient than any LLM. In a forthcoming paper in Linguistic Inquiry, researchers claim to have trained an LLM on no more text than a human child is exposed to, finding that it can use even rare bits of grammar. But other researchers have tried to train an LLM on a database of only child-directed language (that is, of transcripts of carers speaking to children). Here LLMs fare far worse. Perhaps the brain really is built for language, as Professor Chomsky says.
【那么“缺乏刺激”呢? 畢竟,據(jù)估計,GPT-3(在最近發(fā)布GPT-4之前,基于LLM的ChatGPT)所接受的訓練數(shù)據(jù)大約是10歲兒童所接觸數(shù)據(jù)的1000倍。這就留下了一種可能性,即孩子們天生就有語法傾向,這使得他們比任何LLM都要精通得多。在即將發(fā)表在《語言學探究》(Linguistic Inquiry)上的一篇論文中,研究人員聲稱,他們訓練的LLM學習的文本并不比人類兒童接觸的文本多,他們發(fā)現(xiàn),LLM甚至可以使用一些罕見的語法。但其他研究人員已經(jīng)嘗試在一個僅針對兒童的語言數(shù)據(jù)庫(即看護人與兒童交談的文字記錄)上訓練LLM。在這里,LLMs的處境要糟糕得多。也許正如喬姆斯基教授所說,大腦真的是為語言而生的。】
【重點詞匯】
proficient /pr??f??(?)nt/ adj. 精通的
forthcoming /?f??θ?k?m??/ adj. 即將發(fā)生的
rare /re?(r)/ adj. 罕見的
transcript /?tr?nskr?pt/ n. (根據(jù)錄音或筆記整理的)文字本
【10】It is difficult to judge. Both sides of the argument are marshalling LLMs to make their case. The eponymous founder of his school of linguistics has offered only a brusque riposte. For his theories to survive this challenge, his camp will have to put up a stronger defence.
【這很難判斷。爭論的雙方都在召集LLMs來證明自己的觀點。他的語言學學派的同名創(chuàng)始人只給出了一個無禮的反駁。為了讓他的理論經(jīng)受住挑戰(zhàn),他的陣營必須建立更強大的防御?!?/p>
【重點詞匯】
marshal /?mɑ??(?)l/ v. 召集
eponymous /??p?n?m?s/ adj. 同名的
brusque /bru?sk/ adj. 無禮的
riposte /r??p?st/ n. 巧妙的反駁
put up 建造
需獲取更多管理類聯(lián)考考研英語二外刊選讀內(nèi)容,可點擊下方“資料下載”處,免費下載!
工商管理MBA備考資料免費領(lǐng)取
去領(lǐng)取