違法信息舉報 客服熱線:400-118-7898
廣告
?
專接本欄目測試廣告

?2019年4月自學考試高等數(shù)學(一)考試重點總結(jié)一

自考 責任編輯:胡燕 2019-04-11

摘要:2019年4月考試即將來臨,在考前這幾天,關(guān)于自考高等數(shù)學(一)的考試重點大家得復(fù)習一下,下文是小編整理的“函數(shù)、極限和連續(xù)”“一元函數(shù)微分學”介紹,供參考。

2019年4月考試即將來臨,在考前這幾天,關(guān)于自考高等數(shù)學(一)的考試重點大家得復(fù)習一下,下文是小編整理的“函數(shù)、極限和連續(xù)”“一元函數(shù)微分學”介紹,供參考。

一、函數(shù)、極限和連續(xù)

(一)函數(shù)

1.知識范圍

(1)函數(shù)的概念

函數(shù)的定義 函數(shù)的表示法 分段函數(shù) 隱函數(shù)

(2)函數(shù)的性質(zhì)

單調(diào)性 奇偶性 有界性 周期性

(3)反函數(shù)

反函數(shù)的定義 反函數(shù)的圖像

(4)基本初等函數(shù)

冪函數(shù) 指數(shù)函數(shù) 對數(shù)函數(shù) 三角函數(shù) 反三角函數(shù)

(5)函數(shù)的四則運算與復(fù)合運算

(6)初等函數(shù)

2.要求

(1)理解函數(shù)的概念。會求函數(shù)的表達式、定義域及函數(shù)值。會求分段函數(shù)的定義域、函數(shù)值,會作出簡單的分段函數(shù)的圖像。

(2)理解函數(shù)的單調(diào)性、奇偶性、有界性和周期性。

(3)了解函數(shù) 與其反函數(shù) 之間的關(guān)系(定義域、值域、圖像),會求單調(diào)函數(shù)的反函數(shù)。

(4)熟練掌握函數(shù)的四則運算與復(fù)合運算。

(5)掌握基本初等函數(shù)的性質(zhì)及其圖像。

(6)了解初等函數(shù)的概念。

(7)會建立簡單實際問題的函數(shù)關(guān)系式。

(二)極限

1.知識范圍

(1)數(shù)列極限的概念

數(shù)列 數(shù)列極限的定義

(2)數(shù)列極限的性質(zhì)

唯一性 有界性 四則運算法則 夾逼定理 單調(diào)有界數(shù)列極限存在定理

(3)函數(shù)極限的概念

函數(shù)在一點處極限的定義 左、右極限及其與極限的關(guān)系 趨于無窮 時函數(shù)的極限 函數(shù)極限的幾何意義

(4)函數(shù)極限的性質(zhì)

唯一性 四則運算法則 夾通定理

(5)無窮小量與無窮大量

無窮小量與無窮大量的定義 無窮小量與無窮大量的關(guān)系 無窮小量的性質(zhì) 無窮小量的階

(6)兩個重要極限

2.要求

(1)理解極限的概念(對極限定義中“ ”、“ ”、“ ”等形式的描述不作要求)。會求函數(shù)在一點處的左極限與右極限,了解函數(shù)在一點處極限存在的充分必要條件。

(2)了解極限的有關(guān)性質(zhì),掌握極限的四則運算法則。

(3)理解無窮小量、無窮大量的概念,掌握無窮小量的性質(zhì)、無窮小量與無窮大量的關(guān)系。會進行無窮小量階的比較(高階、低階、同階和等價)。會運用等價無窮小量代換求極限。

(4)熟練掌握用兩個重要極限求極限的方法。

(三)連續(xù)

1.知識范圍

(1)函數(shù)連續(xù)的概念

函數(shù)在一點處連續(xù)的定義 左連續(xù)與右連續(xù) 函數(shù)在一點處連續(xù)的充分必要條件 函數(shù)的間斷點及其分類

(2)函數(shù)在一點處連續(xù)的性質(zhì)

連續(xù)函數(shù)的四則運算 復(fù)合函數(shù)的連續(xù)性 反函數(shù)的連續(xù)性

(3)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)

有界性定理 最大值與最小值定理 介值定理(包括零點定理)

(4)初等函數(shù)的連續(xù)性

2.要求

(1)理解函數(shù)在一點處連續(xù)與間斷的概念,理解函數(shù)在一點處連續(xù)與極限存在的關(guān)系,掌握判斷函數(shù)(含分段函數(shù))在一點處的連續(xù)性的方法。

(2)會求函數(shù)的間斷點及確定其類型。

(3)掌握在閉區(qū)間上連續(xù)函數(shù)的性質(zhì),會用介值定理推證一些簡單命題。

(4)理解初等函數(shù)在其定義區(qū)間上的連續(xù)性,會利用連續(xù)性求極限。

二、一元函數(shù)微分學

(一)導(dǎo)數(shù)與微分

1.知識范圍

(1)導(dǎo)數(shù)概念

導(dǎo)數(shù)的定義 左導(dǎo)數(shù)與右導(dǎo)數(shù) 函數(shù)在一點處可導(dǎo)的充分必要條件 導(dǎo)數(shù)的幾何意義與物理意義 可導(dǎo)與連續(xù)的關(guān)系

(2)求導(dǎo)法則與導(dǎo)數(shù)的基本公式

導(dǎo)數(shù)的四則運算 反函數(shù)的導(dǎo)數(shù) 導(dǎo)數(shù)的基本公式

(3)求導(dǎo)方法

復(fù)合函數(shù)的求導(dǎo)法 隱函數(shù)的求導(dǎo)法 對數(shù)求導(dǎo)法 由參數(shù)方程確定的函數(shù)的求導(dǎo)法 求分段函數(shù)的導(dǎo)數(shù)

(4)高階導(dǎo)數(shù)

高階導(dǎo)數(shù)的定義 高階導(dǎo)數(shù)的計算

(5)微分

微分的定義 微分與導(dǎo)數(shù)的關(guān)系 微分法則 一階微分形式不變性

2.要求

(1)理解導(dǎo)數(shù)的概念及其幾何意義,了解可導(dǎo)性與連續(xù)性的關(guān)系,掌握用定義求函數(shù)在一點處的導(dǎo)數(shù)的方法。

(2)會求曲線上一點處的切線方程與法線方程。

(3)熟練掌握導(dǎo)數(shù)的基本公式、四則運算法則及復(fù)合函數(shù)的求導(dǎo)方法,會求反函數(shù)的導(dǎo)數(shù)。

(4)掌握隱函數(shù)求導(dǎo)法、對數(shù)求導(dǎo)法以及由參數(shù)方程所確定的函數(shù)的求導(dǎo)方法,會求分段函數(shù)的導(dǎo)數(shù)。

(5)理解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的 階導(dǎo)數(shù)。

(6)理解函數(shù)的微分概念,掌握微分法則,了解可微與可導(dǎo)的關(guān)系,會求函數(shù)的一階微分。

(二)微分中值定理及導(dǎo)數(shù)的應(yīng)用

1.知識范圍

(1)微分中值定理

羅爾(Rolle)定理 拉格朗日(Lagrange)中值定理

(2)洛必達(L‘Hospital)法則

(3)函數(shù)增減性的判定法

(4)函數(shù)的極值與極值點 最大值與最小值

(5)曲線的凹凸性、拐點

(6)曲線的水平漸近線與鉛直漸近線

2.要求

(1)理解羅爾定理、拉格朗日中值定理及它們的幾何意義。會用羅爾定理證明方程根的存在性。會用拉格朗日中值定理證明簡單的不等式。

(2)熟練掌握用洛必達法則求各種型未定式的極限的方法。

(3)掌握利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性及求函數(shù)的單調(diào)增、減區(qū)間的方法,會利用函數(shù)的單調(diào)性證明簡單的不等式。

(4)理解函數(shù)極值的概念。掌握求函數(shù)的極值、最大值與最小值的方法,會解簡單的應(yīng)用問題。

(5)會判斷曲線的凹凸性,會求曲線的拐點。

(6)會求曲線的水平漸近線與鉛直漸近線。

(7)會作出簡單函數(shù)的圖形。

更多資料

00149《國際貿(mào)易理論與實務(wù)》【知識集錦】

00159《高級財務(wù)會計》【知識集錦】

00184《市場營銷策劃》【知識集錦】

溫馨提示:因考試政策、內(nèi)容不斷變化與調(diào)整,本網(wǎng)站提供的以上信息僅供參考,如有異議,請考生以權(quán)威部門公布的內(nèi)容為準!

自考備考資料免費領(lǐng)取

去領(lǐng)取