?2022年成都信息工程大學專升本高等數學考試大綱(理工類)
摘要:2022年成都信息工程大學專升本高等數學考試大綱(理工類)已經發(fā)布了,想要報考專升本考試的學生可以看一下考試大綱,了解相關的考試信息。具體請見下文。
2022年成都信息工程大學專升本高等數學考試大綱(理工類)
一、考試說明
《高等數學(理工類)》考試總分 100 分, 包括函數、極限和連續(xù)、 一元函數微分學、一元函數積分學、向量代數與空間解析幾何、多元 函數微分學、多元函數積分學、常微分方程、無窮級數和線性代數,其中線性代數內容約占 25 分??荚嚂r間總計 120 分鐘。
本大綱對內容的要求由低到高, 對概念和理論分為“了解” 和 “理解”兩個層次; 對方法和運算分為“會”、“掌握”和“熟練掌握”三個層次。
考題類型: 選擇題; 填空題; 其他類型(包括計算題、應用題、 證明題等)。
二、考試內容及要求
(一) 函數、極限和連續(xù)
1. 函數
(1)理解函數的概念,會求函數的定義域、表達式及函數值。會 求分段函數的定義域、函數值, 并會做出簡單的分段函數圖像。 會建 立簡單實際問題的函數關系式。
(2)理解和掌握函數的單調性、奇偶性、有界性和周期性,會判 斷所給函數的類別。
(3)了解函數與其反函數之間的關系, 會求單調函數的反函數。
(4)理解和掌握函數的四則運算與復合運算,熟練掌握復合函數 的復合過程。
(5)掌握基本初等函數及其簡單性質與圖象。
(6)了解初等函數的概念及其性質。
2. 極限
(1)理解極限的概念,會求數列極限及函數在一點處的左極限、 右極限和極限, 了解數列極限存在性定理以及函數在一點處極限存在的充分必要條件。
(2)了解極限的有關性質, 熟練掌握極限的四則運算法則(包括數列極限與函數極限)。
(3)熟練掌握用兩個重要極限求極限的方法。
(4)了解無窮小量、無窮大量的概念, 掌握無窮小量與無窮大量 的關系,會進行無窮小量階的比較。熟練掌握等價無窮小量替換定理。
3. 連續(xù)
(1)理解函數在一點連續(xù)與間斷的概念, 會判斷函數(含分段函數) 的連續(xù)性,理解函數在一點連續(xù)與極限存在的關系。
(2)會求函數的間斷點及確定其類型。
(3)掌握閉區(qū)間上連續(xù)函數的性質, 會運用零點定理證明方程根的存在性。
(4)了解初等函數在其定義區(qū)間上連續(xù), 并會利用連續(xù)性求極限。
(二) 一元函數微分學
1. 導數與微分
(1)理解導數的概念, 了解導數的幾何意義以及函數可導性與連 續(xù)性之間的關系, 會用定義判斷函數的可導性。
(2)掌握曲線上一點處的切線方程與法線方程的求法。
(3)熟練掌握導數的基本公式、四則運算法則以及復合函數的求 導方法, 會求反函數的導數。
(4)掌握隱函數以及由參數方程所確定的函數的求導方法, 掌握 對數求導法,會求分段函數的導數。
(5)了解高階導數的概念,會求初等函數的高階導數。
(6)理解函數的微分概念及微分的幾何意義, 掌握微分運算法則 及一階微分形式的不變性, 了解可微與可導的關系, 會求函數的微分。
2. 中值定理及導數的應用
(1)了解羅爾中值定理、拉格朗日中值定理及其幾何意義,會用 羅爾中值定理證明方程根的存在性,會用拉格朗日中值定理證明簡單 的不等式。
(2)熟練掌握用洛必達法則求未定式的極限。
(3)掌握利用導數判定函數的單調性及求函數的單調增、減區(qū)間 的方法, 會利用函數的單調性證明簡單的不等式。
(4)了解函數極值的概念,掌握求函數的極值和最大(小)值的方 法,并且會解簡單的經濟應用問題。
(5)會判定曲線的凹凸性,會求曲線的拐點。
(6)會求曲線的水平漸近線與垂直漸近線。
(三) 一元函數積分學
1. 不定積分
(1)理解原函數與不定積分的概念, 掌握不定積分的性質,了解 原函數存在定理。
(2)熟練掌握基本的積分公式。
(3)熟練掌握不定積分第一換元法、第二換元法(限于三角代換與 簡單的根式代換)。
(4)掌握不定積分的分部積分法。
(5)會求簡單有理函數及簡單無理函數的不定積分。
2. 定積分
(1)理解定積分的概念與幾何意義, 了解函數可積的條件。
(2)掌握定積分的基本性質
(3)了解變上限的定積分是變上限的函數,掌握對變上限定積分 求導數的方法。
(4)熟練掌握牛頓—萊布尼茨公式。
(5)掌握定積分的換元積分法與分部積分法。并會證明一些簡單 的積分恒等式。
(6)理解無窮區(qū)間廣義積分的概念, 掌握其計算方法。
(7)掌握直角坐標系下用定積分計算平面圖形的面積, 會求平面 圖形繞坐標軸旋轉所生成的旋轉體體積
(四) 向量代數與空間解析幾何
1. 向量代數
(1)理解向量的概念,掌握向量的坐標表示法, 會求單位向量、 方向余弦、向量在坐標軸上的投影。
(2)掌握向量的線性運算、 向量的數量積以及兩向量的向量積的計算方法。
(3)了解兩向量平行、垂直的條件。
2. 平面與直線
(1)會求平面的點法式方程、一般式方程。會判定兩平面的垂直、 平行。
(2)會求點到平面的距離。
(3)了解直線的一般式方程, 會求直線的標準式方程、參數式方程。會判定兩直線平行、垂直。
(4)會判定直線與平面間的關系(垂直、平行、直線在平面上)。
3. 簡單的二次曲面
了解球面、母線平行于坐標軸的柱面、圓錐面、橢球面、拋物面、 和雙曲面的方程及其圖形。
(五) 多元函數微分學
(1)了解多元函數的概念、二元函數的幾何意義及二元函數的極 限與連續(xù)概念(對計算不作要求)。會求二元函數的定義域。
(2)理解偏導數概念,了解全微分概念及其全微分存在的必要條 件與充分條件。
(3)掌握二元函數的一、二階偏導數與全微分的計算方法。
(4)掌握復合函數一階偏導數的求法(含抽象函數)。
(5)會求二元函數的全微分(不含抽象函數)。
(6)掌握由方程F(x, y, z) = 0所確定的隱函數z = z(x, y) 的一階偏導數的計算方法。
(7)掌握空間曲線的切線和法平面方程的求法,掌握空間曲面的切平面和法線方程的求法。
(8)會求二元函數的無條件極值。會應用拉格朗日乘數法求解一 些最大值最小值問題。
(六) 多元函數積分學
1. 二重積分
(1)理解二重積分的概念及其性質。
(2)掌握二重積分在直角坐標系及極坐標系下的計算方法。
(3)會用二重積分解決簡單的應用問題(限于空間封閉曲面所圍 成的有界區(qū)域的體積)。
2. 曲線積分
(1)了解對坐標的曲線積分的概念及性質。
(2)掌握對坐標的曲線積分的計算。
(3)掌握格林(Green)公式。掌握曲線積分與路徑無關的條件, 并 會應用于曲線積分的計算中。
(七) 無窮級數
1. 數項級數
(1)理解級數收斂、發(fā)散的概念,掌握級數收斂的必要條件,了解級數的基本性質。
(2)掌握正項級數的比較判別法、比值判別法, 了解根值判別法。
(3)掌握幾何級數、調和級數與 p—級數的斂散性。
(4)掌握萊布尼茨判別法。
(5)理解級數絕對收斂與條件收斂的概念,會判定任意項級數絕對收斂與條件收斂性。
2. 冪級數
(1)了解冪級數的概念。
(2)掌握求冪級數的收斂半徑、收斂區(qū)間(不要求討論端點)的方 法。
(3)掌握冪級數在其收斂區(qū)間內的逐項求導與逐項積分的性質與方法。
(4)掌握用的麥克勞林展開式, 將簡單的初等函數展開為的冪級數的方法。
(八) 常微分方程
1. 一階微分方程
(1)理解微分方程的定義,理解微分方程的階、解、通解、 初始 條件和特解的概念。
(2)掌握可分離變量方程的解法。
(3)掌握一階線性微分方程的解法。
2. 二階線性微分方程
(1)了解二階線性微分方程解的結構。
(2)掌握二階常系數齊次線性微分方程的解法。
(3)掌握二階常系數非齊次線性微分方程的解法 (自由項限定為)
(九) 線性代數
1. 行列式
(1)了解行列式的概念,掌握行列式的性質。
(2)熟練掌握行列式的性質和行列式按行(列)展開定理。
2. 矩陣
(1)理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三 角矩陣和對稱矩陣以及它們的性質。
(2)掌握矩陣的線性運算、乘法、轉置、方陣乘積的行列式及它 們的運算規(guī)律。
(3)理解逆矩陣的概念,掌握矩陣可逆的充分必要條件,理解伴 隨矩陣的概念, 會用伴隨矩陣求矩陣的逆矩陣。
(4)掌握矩陣的初等變換,了解矩陣秩的概念, 掌握用初等變換 求矩陣的秩和逆矩陣的方法。
3. 向量
(1)了解n 維向量的概念,向量的線性組合與線性表示。
(2)理解向量組線性相關與線性無關的定義,掌握判別向量組線
性相關性的方法。
(3)了解向量組的極大線性無關組和向量組的秩的概念, 掌握向 量組的極大線性無關組和秩的求法。
4. 線性方程組
(1)掌握克拉默法則。
(2)理解齊次線性方程組有非零解的充分必要條件及非齊次線性 方程組有解的充分必要條件。
(3)了解齊次線性方程組的基礎解系、 通解的概念。 (4)了解非齊次線性方程組解的結構及通解的概念。 (5)熟練掌握用行初等變換求線性方程組通解的方法。
三、參考書目
《高等數學》 (第七版)(上下冊),同濟大學數學系編,高等教育出版社。
延伸閱讀
- 四川省普通高校專升本考試要求—計算機基礎
- 四川省普通高校專升本考試要求—大學英語
- 四川省普通高校專升本考試要求—大學語文
- 2023年西南交通大學希望學院專升本考試大綱匯總
- 2023年西南交通大學希望學院專升本綜合英語考試大綱
- 2023年西南交通大學希望學院專升本英美概況考試大綱
專升本微信公眾號
掃碼添加
專升本備考資料免費領取
去領取