摘要:在成人高考專升本中,只有部分專業(yè)需要考數(shù)學,而且在其中,數(shù)學主要分為高數(shù)一和高數(shù)二。對于2021年成人高考專升本高數(shù)(一)考試,下面我們就一起來看看2021年成人高考專升本高數(shù)(一)考前復習資料(6)。
2021年成人高考專升本高數(shù)(一)考前復習資料(8)
點擊查看>>更多2021年成人高考專升本高數(shù)(一)考前復習資料
平面與直線
1.知識范圍
(1)常見的平面方程
點法式方程 一般式方程
(2)兩平面的位置關系(平行、垂直和斜交)
(3)點到平面的距離
(4)空間直線方程
標準式方程(又稱對稱式方程或點向式方程)一般式方程參數(shù)式方程
(5)兩直線的位置關系(平行、垂直)
(6)直線與平面的位置關系(平行、垂直和直線在平面上)
2.要求
(1)會求平面的點法式方程、一般式方程。會判定兩平面的垂直、平行。會求兩平面間的夾角。
(2)會求點到平面的距離。
(3)了解直線的一般式方程,會求直線的標準式方程、參數(shù)式方程。會判定兩直線平行、垂直。
(4)會判定直線與平面間的關系(垂直、平行、直線在平面上)。
導數(shù)與微分
1、知識范圍
(1)導數(shù)概念
導數(shù)的定義、左導數(shù)與右導數(shù)、函數(shù)在一點處可導的充分必要條件導數(shù)的幾何意義與物理意義、可導與連續(xù)的關系
(2)求導法則與導數(shù)的基本公式
導數(shù)的四則運算、反函數(shù)的導數(shù)、導數(shù)的基本公式
(3)求導方法
復合函數(shù)的求導法、隱函數(shù)的求導法、對數(shù)求導法由參數(shù)方程確定的函數(shù)的求導法、求分段函數(shù)的導數(shù)
(4)高階導數(shù)
高階導數(shù)的定義、高階導數(shù)的計算
(5)微分
微分的定義、微分與導數(shù)的關系、微分法則一階微分形式不變性
2、要求
(1)理解導數(shù)的概念及其幾何意義,了解可導性與連續(xù)性的關系,掌握用定義求函數(shù)在一點處的導數(shù)的方法。
(2)會求曲線上一點處的切線方程與法線方程。
(3)熟練掌握導數(shù)的基本公式、四則運算法則及復合函數(shù)的求導方法,會求反函數(shù)的導數(shù)。
(4)掌握隱函數(shù)求導法、對數(shù)求導法以及由參數(shù)方程所確定的函數(shù)的求導方法,會求分段函數(shù)的導數(shù)。
(5)理解高階導數(shù)的概念,會求簡單函數(shù)的階導數(shù)。
(6)理解函數(shù)的微分概念,掌握微分法則,了解可微與可導的關系,會求函數(shù)的一階微分。
(二)微分中值定理及導數(shù)的應用
1、知識范圍
(1)微分中值定理
羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理
(2)洛必達(L‘Hospital)法則
(3)函數(shù)增減性的判定法
(4)函數(shù)的極值與極值點最大值與最小值
(5)曲線的凹凸性、拐點
(6)曲線的水平漸近線與鉛直漸近線
相關閱讀: