2021年成人高考專升本高數(shù)(一)考前復(fù)習(xí)資料(4)

成人高考 責(zé)任編輯:楊銳頻 2021-09-28

摘要:在成人高考專升本中,只有部分專業(yè)需要考數(shù)學(xué),而且在其中,數(shù)學(xué)主要分為高數(shù)一和高數(shù)二。對(duì)于2021年成人高考專升本高數(shù)(一)考試,下面我們就一起來看看2021年成人高考專升本高數(shù)(一)考前復(fù)習(xí)資料(4)。

2021年成人高考專升本高數(shù)(一)考前復(fù)習(xí)資料(4)

點(diǎn)擊查看>>更多2021年成人高考專升本高數(shù)(一)考前復(fù)習(xí)資料

極限

1.知識(shí)范圍

(1)數(shù)列極限的概念

數(shù)列 數(shù)列極限的定義

(2)數(shù)列極限的性質(zhì)

唯一性 有界性 四則運(yùn)算法則 夾逼定理 單調(diào)有界數(shù)列極限存在定理

(3)函數(shù)極限的概念

函數(shù)在一點(diǎn)處極限的定義 左、右極限及其與極限的關(guān)系 趨于無窮 時(shí)函數(shù)的極限 函數(shù)極限的幾何意義

(4)函數(shù)極限的性質(zhì)

唯一性 四則運(yùn)算法則 夾通定理

(5)無窮小量與無窮大量

無窮小量與無窮大量的定義 無窮小量與無窮大量的關(guān)系 無窮小量的性質(zhì) 無窮小量的階

(6)兩個(gè)重要極限

2.要求

(1)理解極限的概念(對(duì)極限定義中“ ”、“ ”、“ ”等形式的描述不作要求)。會(huì)求函數(shù)在一點(diǎn)處的左極限與右極限,了解函數(shù)在一點(diǎn)處極限存在的充分必要條件。

(2)了解極限的有關(guān)性質(zhì),掌握極限的四則運(yùn)算法則。

(3)理解無窮小量、無窮大量的概念,掌握無窮小量的性質(zhì)、無窮小量與無窮大量的關(guān)系。會(huì)進(jìn)行無窮小量階的比較(高階、低階、同階和等價(jià))。會(huì)運(yùn)用等價(jià)無窮小量代換求極限。

(4)熟練掌握用兩個(gè)重要極限求極限的方法。

(三)連續(xù)

1.知識(shí)范圍

(1)函數(shù)連續(xù)的概念

函數(shù)在一點(diǎn)處連續(xù)的定義 左連續(xù)與右連續(xù) 函數(shù)在一點(diǎn)處連續(xù)的充分必要條件 函數(shù)的間斷點(diǎn)及其分類

(2)函數(shù)在一點(diǎn)處連續(xù)的性質(zhì)

連續(xù)函數(shù)的四則運(yùn)算 復(fù)合函數(shù)的連續(xù)性 反函數(shù)的連續(xù)性

(3)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)

有界性定理 最大值與最小值定理 介值定理(包括零點(diǎn)定理)

(4)初等函數(shù)的連續(xù)性

2.要求

(1)理解函數(shù)在一點(diǎn)處連續(xù)與間斷的概念,理解函數(shù)在一點(diǎn)處連續(xù)與極限存在的關(guān)系,掌握判斷函數(shù)(含分段函數(shù))在一點(diǎn)處的連續(xù)性的方法。

(2)會(huì)求函數(shù)的間斷點(diǎn)及確定其類型。

(3)掌握在閉區(qū)間上連續(xù)函數(shù)的性質(zhì),會(huì)用介值定理推證一些簡單命題。

(4)理解初等函數(shù)在其定義區(qū)間上的連續(xù)性,會(huì)利用連續(xù)性求極限。

相關(guān)閱讀:

2021年成人高考專升本高數(shù)(一)真題及答案

相關(guān)推薦

2022成考備考試題、復(fù)習(xí)資料一覽hot-t.gif

成人高考備考復(fù)習(xí)指南專題

了解更多成人高考備考技巧請(qǐng)點(diǎn)擊>>

鎖定考點(diǎn),突破難點(diǎn),2022年成人高考高效通過!點(diǎn)擊馬上聽課>>成考各科精講視頻教程

更多資料
更多課程
更多真題
溫馨提示:因考試政策、內(nèi)容不斷變化與調(diào)整,本網(wǎng)站提供的以上信息僅供參考,如有異議,請(qǐng)考生以權(quán)威部門公布的內(nèi)容為準(zhǔn)!
專注在線職業(yè)教育23年

項(xiàng)目管理

信息系統(tǒng)項(xiàng)目管理師

廠商認(rèn)證

信息系統(tǒng)項(xiàng)目管理師

信息系統(tǒng)項(xiàng)目管理師

學(xué)歷提升

!
咨詢在線老師!