成人高考數(shù)學(理)復習難點——函數(shù)

成人高考 責任編輯:楊銳頻 2021-02-18

摘要:成人高考高起點是高起本和高起專的統(tǒng)稱,2021年的成人高考已經(jīng)進入備考階段。報考成考高起點文史類專業(yè)的考生則需要考文科數(shù)學,理工類專業(yè)考理科數(shù)學。那么2021年成人高考高起點理科數(shù)學應該如何復習函數(shù)呢?請看下文。

成人高考數(shù)學(理)復習難點——函數(shù)

求解函數(shù)解析式

求解函數(shù)解析式是高考重點考查內(nèi)容之一,需引起重視。本節(jié)主要幫助考生在深刻理解函數(shù)定義的基礎上,掌握求函數(shù)解析式的幾種方法,并形成能力,并培養(yǎng)考生的創(chuàng)新能力和解決實際問題的能力。

難點:

已知f(2-cosx)=cos2x+cosx,求f(x-1)。

案例探究

[例1](1)已知函數(shù)f(x)滿足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表達式。

(2)已知二次函數(shù)f(x)=ax2+bx+c滿足|f(1)|=|f(-1)|=|f(0)|=1,求?f(x)的表達式。

函數(shù)值域及求法

函數(shù)的值域及其求法是近幾年高考考查的重點內(nèi)容之一。本節(jié)主要幫助考生靈活掌握求值域的各種方法,并會用函數(shù)的值域解決實際應用問題。

難點:

設m是實數(shù),記M={m|m>1},f(x)=log3(x2-4mx+4m2+m)。

(1)證明:當m∈M時,f(x)對所有實數(shù)都有意義;反之,若f(x)對所有實數(shù)x都有意義,則m∈M。

(2)當m∈M時,求函數(shù)f(x)的最小值。

(3)求證:對每個m∈M,函數(shù)f(x)的最小值都不小于1。

點擊查看>>2021年成人高考高起點理科數(shù)學復習資料匯總

更多資料
更多課程
更多真題
溫馨提示:因考試政策、內(nèi)容不斷變化與調(diào)整,本網(wǎng)站提供的以上信息僅供參考,如有異議,請考生以權(quán)威部門公布的內(nèi)容為準!
專注在線職業(yè)教育24年

項目管理

信息系統(tǒng)項目管理師

廠商認證

信息系統(tǒng)項目管理師

信息系統(tǒng)項目管理師

!
咨詢在線老師!